• K-Means

    Separating data into distinct clusters, organizing diverse information and simplifying complexity with vibrant clarity

  • Principal Components Analysis

    Making high dimensions comprehensible and actionable, it captures the maximum amount of variance in the data with a reduced number of features

  • Random Forest for Regression

    Combining decision trees, it provides predictive accuracy that illuminates the path to regression analysis

  • Support Vector Machines for Regression

    Leveraging mathematical precision, it excels in predicting values by carving precise pathways through data complexities

Monday, July 24, 2023

Particle Swarm Optimization

The Concept of "Optimization"Optimization is a fundamental aspect of many scientific and engineering disciplines. It involves finding the best solution from a set of possible solutions, often with the goal of minimizing or maximizing a particular function. Optimization algorithms...
Share:

Wednesday, June 28, 2023

Random Forest Regression

Random Forest is a powerful machine learning algorithm that has gained significant popularity in both academia and industry due to its excellent performance, robustness, and easy use. It's an ensemble learning method, which means that it combines the predictions of several base...
Share:

Saturday, June 10, 2023

Mathematical Formulation SVR

Support Vector Machines (SVMs), first introduced by Vapnik in 1995, represent one of the most impactful advancements in the realm of machine learning. Since their inception, SVMs have proven highly versatile, with successful implementations across a myriad of domains including...
Share:

Sunday, May 28, 2023

Support Vector Machines for Regression

Support Vector Machines (SVM) is a powerful and versatile machine learning algorithm that is widely used in both Classification and Regression tasks. Originally developed for binary classification, it operates on the principle of finding the hyperplane that best separates the...
Share:

Saturday, May 13, 2023

Regression in Machine Learning

Regression is a supervised learning technique widely used in Machine Learning and Data Science. These kind of techniques aims to predict a continuous outcome variable (y) based on the values of one or more predictor variables and features (X), which can be continuous and/or...
Share:

Monday, May 1, 2023

Data Encoding

In the field of data science, the quality and format of the data we work with are just as important as the algorithms and models we use. One of the crucial aspects of data preprocessing is Data Encoding, a process that transforms categorical data into a format that can be understood...
Share:

Thursday, April 20, 2023

Drawing the Line: Understanding Decision Boundaries

In the domain of data science, classification problems are everywhere. From identifying spam emails to diagnosing diseases, Classification algorithms have transformed the way we make decisions. Understanding and visualizing decision boundaries offers significant insights into...
Share:

About Me

My photo
I am a Physics Engineer graduated with academic excellence as the first in my generation. I have experience programming in several languages, like C++, Matlab and especially Python, using the last two I have worked on projects in the area of Image and signal processing, as well as machine learning and data analysis projects.

Recent Post

Particle Swarm Optimization

The Concept of "Optimization" Optimization is a fundamental aspect of many scientific and engineering disciplines. It involves fi...

Pages