• K-Means

    Separating data into distinct clusters, organizing diverse information and simplifying complexity with vibrant clarity

  • Random Forest for Regression

    Combining decision trees, it provides predictive accuracy that illuminates the path to regression analysis

  • Support Vector Machines for Regression

    Leveraging mathematical precision, it excels in predicting values by carving precise pathways through data complexities

Saturday, July 12, 2025

Field Quantization. Hamiltonian for a single-mode field

We have the case of a radiant field confined in one dimensional cavity along the z-axis with perfectly conducting walls at  $z = 0$ and $z = L$, so that the electric field vanish in the boundaries as shown in:


Maxwell's equations without sources are:

\begin{equation} \nabla \times \textbf{E} = \frac{\partial \textbf{B}}{\partial t}  \end{equation}

\begin{equation} \nabla \times \textbf{B} = \mu_0 \varepsilon_0 \frac{\partial \textbf{E}}{\partial t}  \end{equation}

\begin{equation} \nabla \cdot \textbf{B} = 0  \end{equation}

\begin{equation}  \nabla \cdot \textbf{E} = 0  \end{equation}


The field is polarized in x-direction, i.e. $\textbf{E}(\textbf{r},t) = \mathbf{e}_x  E_x(z,t)$, with $\textbf{e}_x $ an unit polarization vector. A field that satisfies Maxwell's equations and boundary conditions is:

\begin{equation} E_x(z,t)=\left( \frac{2\omega^{2}}{V\varepsilon_0} \right)^{1/2}q(t) \text{sin}(kz)  \end{equation}


With $\omega$ the frequency of the mode, $k=\cfrac{\omega}{c}$ the wave number, $V$ the effective volume of the cavity and $q(t)$ the canonical position. We can not have all frequencies due to the boundary condition at $z=L$, this only allowed frequencies $\omega_m = c \cfrac{m\pi}{L}, \quad m=1,2,\cdots$. From Eq. (2) and Eq. (5) we obtain: 

\begin{equation*} \textbf{e}_x \left( \partial_y B_z - \partial_z B_y  \right) + \textbf{e}_y \left( \partial_z B_x - \partial_x B_z  \right) + \textbf{e}_z \left( \partial_x B_y - \partial_y B_x  \right) = \textbf{e}_x \left( \mu_0\varepsilon_0 \partial_t E_x \right) \\ \partial_y B_z - \partial_z B_y = \mu_0\varepsilon_0 \left( \frac{2\omega^{2}}{V\varepsilon_0} \right)^{1/2} \text{sin}(kz) \partial_t q =  \mu_0\varepsilon_0 \left( \frac{2\omega^{2}}{V\varepsilon_0} \right)^{1/2} \dot{q}(t) \text{sin}(kz)  \\  - \partial_z B_y = \mu_0\varepsilon_0 \left( \frac{2\omega^{2}}{V\varepsilon_0} \right)^{1/2} \dot{q}(t) \text{sin}(kz) \end{equation*}

\begin{equation} \Rightarrow  B_y (z,t) = \frac{\mu_0\varepsilon_0}{k} \left( \frac{2\omega^{2}}{V\varepsilon_0} \right)^{1/2} \dot{q}(t) \text{cos}(kz) \end{equation}


The Hamiltonian of the field described above is:

\begin{equation} H=\frac{1}{2}\int dV \left[ \varepsilon_0 E_x^{2}(z,t) + \frac{1}{\mu_0}B_y^{2}(z,t) \right] \end{equation}


Substituting Eq. (5) and Eq. (6) in Eq. (7):

\begin{equation*} H=\frac{1}{2} \left[  \varepsilon_0 \frac{2\omega^{2}}{V\varepsilon_0} q^2(t) \int dV \text{sin}^2(kz)  + \frac{1}{\mu_0} \frac{\mu_0^2 \varepsilon_0^2}{k^2} \frac{2\omega^{2}}{V\varepsilon_0} \dot{q}^2(t) \int dV \text{cos}^2(kz) \right] \end{equation*}


It is important to emphasize that $V$ in the equations for $E_x$ and $B_y$ is the volume of the cavity, i.e. it is a constant. Noting that $k=\cfrac{\omega}{c}$ and $\mu_0\varepsilon_0 = \cfrac{1}{c^2}$

\begin{equation*} H=\frac{1}{2} \left[  \frac{2\omega^{2}}{V} q^2(t) \int dV \text{sin}^2(kz)  +   \frac{2}{V} \dot{q}^2(t) \int dV \text{cos}^2(kz) \right] \end{equation*}


For this case we have $\int dV = A\int_L dz$, so:

\begin{align*} H &= \frac{1}{2}A \left[  \frac{2\omega^{2}}{V} q^2(t) \int_L dz \; \text{sin}^2(kz)  +   \frac{2}{V} \dot{q}^2(t) \int_L dz \; \text{cos}^2(kz) \right] \\ \\ &= \frac{1}{2}A \left[ \frac{\omega^2 q^2(t)L}{V} +  \frac{\dot{q}^2(t) L}{V}  \right]\end{align*}


Considering a particle of unit mass, i.e. the canonical momentum is $p(t) = \dot{q}(t)$ and noting that $V=AL$, the Hamiltonian results:

\begin{equation} \boxed{H = \frac{1}{2} \left( p^2 + \omega^2 q^2  \right)} \end{equation}


Share:

About Me

My photo
I am an Engineering Physicist, graduated with academic excellence as the top of my class. I have experience programming in several languages, including C++, MATLAB, and especially Python. I have worked on projects in image and signal processing, as well as in machine learning and data analysis.

Recent Post

Field Quantization. Annihilation and Creation operators

Taking up the Hamiltonian equation from Field Quantization. Hamiltonian for a single-mode field \begin{equation} H = \frac{1}{2} \left( p^2 ...

Pages