Monday, August 18, 2025

Field Quantization. Annihilation and Creation operators

Taking up the Hamiltonian equation from Field Quantization. Hamiltonian for a single-mode field

\begin{equation} H = \frac{1}{2} \left( p^2 + \omega^2 q^2  \right) \end{equation}

Where $q$ and $p$ are the canonical variables. To make a quantum approach  we just replace them with the respective operator $\hat{q}$ and $\hat{p}$, which must satisfy the canonical commutation relation:

\begin{equation} \left[ \hat{q},\hat{p} \right]=i\hbar \hat{I} \equiv i\hbar \end{equation}

With these operators the Hamiltonian transforms into the operator:

\begin{equation} \hat{H} = \frac{1}{2} \left( \hat{p} ^2 + \omega^2 \hat{q} ^2  \right)  \end{equation}

It is convenient to introduce the non-Hermitian annihilation $\hat{a}$ and creation $\hat{a} ^\dagger$ operators given by:

\begin{equation} \hat{a} = (2 \hbar \omega)^{-1/2} (\omega \hat{q}+ i\hat{p}) \end{equation} \begin{equation} \hat{a} ^\dagger = (2 \hbar \omega)^{-1/2} (\omega \hat{q}- i\hat{p}) \end{equation}

These satisfiy the commutation relation: 

\begin{equation}  \left[ \hat{a},\hat{a} ^\dagger \right] =  \hat{a} \hat{a} ^\dagger -  \hat{a}^\dagger \hat{a}= 1 \end{equation}

Noting that

\begin{align*} \hat{a} ^\dagger \hat{a} &= (2 \hbar \omega)^{-1/2} (\omega \hat{q}- i\hat{p})(2 \hbar \omega)^{-1/2} (\omega \hat{q}+ i\hat{p}) =  \frac{1}{2 \hbar \omega}\left[  \omega^2\hat{q}^2 + i\omega\hat{q}\hat{p}-i\omega\hat{p}\hat{q}+\hat{p}^2  \right] \\ \\ &=  \frac{1}{2 \hbar \omega}\left[  \omega^2\hat{q}^2 + i\omega \left[ \hat{q},\hat{p} \right]+\hat{p}^2  \right] =  \frac{1}{2 \hbar \omega}\left[  \omega^2\hat{q}^2 - \omega\hbar +\hat{p}^2  \right] = \frac{1}{\hbar \omega} \frac{1}{2} \left( \hat{p}^2 +  \omega^2\hat{q}^2 \right)  - \frac{1}{2} \\ \\ &= \frac{1}{\hbar \omega}\hat{H}-\frac{1}{2} \end{align*}


So, the Hamiltonian operator can be defined as:

\begin{equation} \hat{H} = \hbar\omega \left(  \hat{a} ^\dagger \hat{a} + \frac{1}{2} \right) \end{equation}

Now we can describe the energy eigenvalues. We denote $\vert n \rangle$ as energy eigenstate of the single mode field with eigenvalue $E_n$ such that:

\begin{equation} \hat{H}\vert n \rangle =  \hbar\omega \left(  \hat{a} ^\dagger \hat{a} + \frac{1}{2} \right) \vert n \rangle = E_n \vert n \rangle \end{equation}

The operator $\hat{a}^\dagger \hat{a}$ has a great importance and is called number operator $\hat{n}$. We will generate the eigenvalue equations for $\hat{a}^\dagger \vert n \rangle$ and $\hat{a} \vert n \rangle$ to appreciate the effect of the operators in the energy level and understand why they are called that. Multiplying Eq. (8) by  $\hat{a}^\dagger$ we obtain:

\begin{equation*} \hbar\omega \left( \hat{a} ^\dagger \hat{a} ^\dagger \hat{a} + \frac{1}{2}\hat{a} ^\dagger \right) \vert n \rangle =  E_n \hat{a}^\dagger \vert n \rangle \end{equation*}

\begin{equation*} \hbar\omega \left( \hat{a} ^\dagger \left(\hat{a}\hat{a}^\dagger -1 \right) + \frac{1}{2}\hat{a} ^\dagger \right) \vert n \rangle =  E_n \hat{a}^\dagger \vert n \rangle \end{equation*}

\begin{equation*} \hbar\omega \left( \hat{a} ^\dagger\hat{a}\hat{a}^\dagger + \frac{1}{2}\hat{a} ^\dagger \right) \vert n \rangle =   E_n  \hat{a}^\dagger \vert n \rangle +  \hbar\omega  \hat{a}^\dagger \vert n \rangle \end{equation*}

\begin{equation*} \hbar\omega \left( \hat{a} ^\dagger\hat{a} + \frac{1}{2} \right) \left(\hat{a}^\dagger \vert n \rangle \right)=  \left( E_n + \hbar\omega \right) \left( \hat{a}^\dagger \vert n \rangle \right) \end{equation*}

\begin{equation} \Rightarrow \hat{H} \left(\hat{a}^\dagger \vert n \rangle \right)=  \left( E_n + \hbar\omega \right) \left( \hat{a}^\dagger \vert n \rangle \right) \end{equation}


This is the equation for the eigenstate  $\hat{a}^\dagger \vert n \rangle$, it has energy eigenvalue of $E_n + \hbar \omega$. We can interpret this as if the operator $\hat{a}^\dagger$ created one quantum of energy $\hbar \omega$, that is why it is called as the creation operator. In the same way, we can multiply Eq. (8) by $\hat{a}$ to obtain the equation for the eigenstate $\hat{a}\vert n \rangle$:

\begin{equation} \hat{H} \left(\hat{a} \vert n \rangle \right)=  \left( E_n - \hbar\omega \right) \left( \hat{a} \vert n \rangle \right) \end{equation}

Similar to the previous case, we can interpret it as if the operator $\hat{a}$ eliminated or annihilated one quantum of energy $\hbar \omega$, that is why it is called as the annihilation operator. 

For the states $\hat{a}\vert n \rangle$, $\hat{a}^\dagger \vert n \rangle$ and $\hat{n} \vert n \rangle$ we have:

\begin{equation}\hat{a}\vert n \rangle = c_n \vert n-1 \rangle \end{equation}

\begin{equation}\hat{a}^\dagger \vert n \rangle = d_n \vert n+1 \rangle \end{equation}

\begin{equation}\hat{n} \vert n \rangle = n \vert n \rangle \end{equation}


Where $c_n$ and $d_n$ are constants. The number of states must be normalized, i.e. $\langle n \vert n \rangle = 1$. The inner product of  $\hat{a}\vert n \rangle$ with itself is:

\begin{equation} (\langle n \vert \hat{a}^\dagger)(\hat{a}\vert n \rangle) = \langle n \vert \hat{a}^\dagger \hat{a} \vert n \rangle = \langle n \vert \hat{n} \vert n \rangle = n \langle n \vert n \rangle = n \end{equation}

Also

\begin{equation} (\langle n \vert \hat{a}^\dagger)(\hat{a}\vert n \rangle) = \langle n-1 \vert c_n^* c_n  \vert n-1 \rangle = \vert c_n \vert ^2 \langle n-1 \vert n-1 \rangle = \vert c_n \vert ^2 \end{equation}

Thus $c_n = \sqrt{n}$ and

\begin{equation} \boxed{ \hat{a}\vert n \rangle = \sqrt{n} \vert n-1 \rangle} \end{equation}


In the same way, the inner product of  $\hat{a}^\dagger \vert n \rangle$ with itself is:

\begin{equation} (\langle n \vert \hat{a})(\hat{a}^\dagger \vert n \rangle) = \langle n \vert \hat{a} \hat{a}^\dagger \vert n \rangle = \langle n \vert (\hat{a}^\dagger\hat{a}+1) \vert n \rangle = \langle n \vert \hat{n} \vert n \rangle +  \langle n \vert  n \rangle =  n + 1\end{equation}

Also

\begin{equation} (\langle n \vert \hat{a})(\hat{a}^\dagger \vert n \rangle) = \langle n+1 \vert d_n^* d_n \vert n+1 \rangle = \vert d_n \vert ^2 \langle n+1 \vert n+1 \rangle = \vert d_n \vert ^2 \end{equation}


Thus $d_n = \sqrt{n+1}$ and

\begin{equation}\boxed{ \hat{a}^\dagger \vert n \rangle = \sqrt{n+1} \vert n+1 \rangle} \end{equation}

Share:

0 comments:

Post a Comment

About Me

My photo
I am an Engineering Physicist, graduated with academic excellence as the top of my class. I have experience programming in several languages, including C++, MATLAB, and especially Python. I have worked on projects in image and signal processing, as well as in machine learning and data analysis.

Recent Post

Field Quantization. Annihilation and Creation operators

Taking up the Hamiltonian equation from Field Quantization. Hamiltonian for a single-mode field \begin{equation} H = \frac{1}{2} \left( p^2 ...

Pages